Developing an ArcPad Application for Exotic Species Monitoring in Saguaro National Park

A Mobile GIS Application

Hoori Ajami

PhD Student – University of Arizona

Mickey Reed

Grad Student – GIS Project Coordinator

Craig Wissler

Director, ART

Advanced Resource Technology (ART)

A GIS service-center at the University of Arizona serving geographical analysis services including Application development, Geoprocessing, and Database design

Overview

Ecological monitoring and field data collection

Choosing a development platform

Developing the application

Evaluating the application

Exotic Species Monitoring

Requires collecting lots of data in the field

Survey large area

Time

Solution?

Mobile GIS Application

Client Specification

 Developing a Microsoft Access database that is compatible with current National Park Service database

Easy to use, user friendly

Decrease the amount of data pre and post processing

Everything Automated!

Why ArcPad?

Solutions:

Trimble

HGIS

ArcPad

Experience

VBScript, ArcPad

Cost

Tools in hand

One-to-Many Relation

Development

Time

Project Design

 Current field data collection and storage structure

ArcPad application development process

Field Data Collection Process

Ecologists collect two kinds of attributes:

- Site specific attributes
 Elevation, slope, aspect
- Species attributes
 Name, %of cover, ...

Therefore,

http://images.google.com

Multiple observations per location point

Sample Form

Date of field observations:				Ownership: National Park Service			Datum of original data:
Start time (for GPS data):				Region: Intermountain Region (NPS)			Coordinate system:
End time (for GPS data):				Network name:			UTM zone:
Surveyor Name:				Park Unit (code):			Scale of Data source:
Data Source:				Country: USA			USGS Quad name:
				State (code): County:			
site ID	Counter	coord E	coord N	plant name	Canopy Cover (%cover)	Treatment (Yes, No)	Phenology
1							
2							
3							

Data Storage

Collecting data in paper forms

Enter data to
 Access database

Time, errors

Application Development Process

Assess Out-of-the-box components

Establish One-to-Many relates

Add custom components

Features in ArcPad

- Stores data in Shapefile format
- Data attribution using customized forms
- Add Image to the background
- GPS connection
- Simple symbology
- Labels

Create Customized forms

ArcPad Studio

ArcPad Layer file

Edit Form

Identify Form

Our Solution

Storing Site Attributes in a shapefile attribute table

 Storing Species Observations in a separate database file

Development Process

Store Site Attributes in a shapefile attribute table

Custom forms

Form Properties

Counter
EmptyTempRecord
UpdateRecordList

EmptyMainLayers count
AppendTemp2MainRecords
EmptyTempRecords

ListSpecies EmptyTempRecords

One-Many Relates in ArcPad?

 Create a "dbf" file for each shapefile to record observations

 Access the records in "dbf" through forms and ArcPad object "RecordSet"

Data Query

Demonstration

Post Processing in ArcGIS

 Python code for re-numbering an attribute "COUNTER"

 "Append" the dbase file to preexisting Access database

Conclusion

 ArcPad can be used effectively for field data collection

 Represents a middle scale solution in terms of development time, cost, and functionality.

 One-to-Many relates can be established in ArcPad, requires lots of scripting

Thank You

Hoori Ajami

Advanced Resource Technology (ART)
The University of Arizona, Tucson
hajami@email.arizona.edu

Mickey Reed

Advanced Resource Technology (ART)
The University of Arizona, Tucson
mreed@srnr.arizona.edu